

Recovery and enzymatic modification of bioactives metabolites from agricultural residues using green technologies: methodology and processes

AgriWasteValue mid-term event

<u>Sébastien Cajot</u>, Job Tchoumtchoua, Laurène Minsat, Cédric Peyrot

26th of January 2021

Preliminary screening of bioactives

Which bioactives in which concentration in which biomasses ?

Preliminary screening of bioactives

High levels of polyphenols in
EtOAc & EtOH70% extracts
Important anti-oxidant
activity of EtOH70% extracts

-**Phloridzin** as majority bioactive (10-15%) (few differences between varities) -High levels of polyphenols in
EtOAc & EtOH70% extracts
-Important anti-oxidant activity
of EtOH70% extracts

- Resveratrol, Viniferin (2-10%), Catechin, Epicatechin, (~ 1%)
(more differences between varities)

-High levels of in H₂O &
EtOH70% extracts
-Important anti-oxidant activity
of EtOH70%

Catechin, Epicatechin, Chorogenic acid (~ 1%)

orth- griW	West Europe				
	PARAMETERS METHOD	TEMPERATURE	DURATION	NUMBER OF CYCLES	RATIO (MASS/VOLUME OF SOLVENT)
	ASE	120°C	10'	2	1
	UAE	RT	30′	1	1/5
					1/10
			1h		1/5
					1/10
	Maceration	RT	4h	1	1/5
					1/10
		50°C			1/5
					1/10

Best extraction yields with **ASE**

N

□ But **no better extraction method** to obtain phenols or antioxidant compounds

	Lab-scale (20 gr)	Medium-scale (200 gr) – 1 cycle	Medium-scale (200 gr) – 2 cycle	Semi-pilot scale (4500 gr)
Extraction yields	5,4 %	11,3 %	2,6 %	13,2 %
Phloridzin content	15,6 %	19,7 %	13 %	20 %

The extraction yield increased as we go to higher scale

□ Moreover, phloridzin content increased also in higher extraction scale

	Initial extract	Enriched extract
Extract mass recovered	100 g	47.3 g
Phloridzin content	20%	49%
Phloridzin recovered in concentrated extract		100%

Total recovery of the bioactive (Phloridzin)

High concentrated extract in Phloridzin

	Initial extract	Enriched extract
Total Phenolic content	160 mg EGA/g	385 mg EGA/g
Anti-oxidant activity (DPPH)	41 mg EGA/g	75 mg EGA/g
Anti-oxidant activity (FRAP)	0.46 mmol eq Fe(II)/g	1.25 mmol eq Fe(II)/g

After resin adsorption

Bioactive modification

Enzymatical or chemical

- Modification of properties
- Increase of bioavailability

Add glucose(s) on free hydroxyle groups of compounds

Marié T. *et al.* « Enzymatic Synthesis of Resveratrol α -Glycosides from β -Cyclodextrin-Resveratrol Complex in Water ». *ACS Sustainable Chemistry & Engineering* 6, n° 4 (2 avril 2018): 5370-80. DOI : 10.1021/acssuschemeng.8b00176.

- □ New properties for resveratrol
- Increase the water-solubility and the bioavailability of compounds

 \rightarrow use in cosmetic formulations

Recovery and enzymatic modification of bioactives

